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Abstract

This paper investigates the problem of dynamic output feedback control for networked nonlinear systems. A novel
event-triggered mechanism (ETM) is proposed, in which a new event-triggering condition is introduced. Compared
with some existing ETMs, the proposed ETM has at least three merits: i) The data-releasing rate can be further
decreased, leading to a reduction of network loads; ii) During the time when the system is disturbed by external
signals, this ETM can release more sampled data to the controller so that some better closed-loop performance can
be achieved; and iii) Wrong decision-making on data-releasing can be avoided due to a new definition of the related
error. By employing the Lyapunov-Krasovskii functional method, sufficient conditions are derived to design both
controller gains and ETM parameters. An example with four cases is given to show the effectiveness and superiority
of the proposed method.

Keywords: Event-triggered mechanism; Dynamic output feedback control; Probabilistic nonlinearities

1. Introduction

Over the last few decades, event-triggered mechanisms (ETMs) for networked control systems (NCSs) have re-
ceived increasing interest of researchers [1, 19, 26, 34]. Different from the conventional time-triggered mechanism,
data-releasing under an ETM is dependent on a predefined event-triggering condition rather than on the lapse of a
fixed time period [4, 15, 33, 35]. In this situation, a large amount of redundant sampled data occupying the net-
work resources, such as networked bandwidth, computation and energy resources of battery-based devices, can be
discarded. Therefore, under an ETM, much better performance is expected for an NCS under study since the quality
of network communication can be improved significantly [11, 17, 24, 27, 40, 44].

The data-releasing device receives a command from the ETM to execute the communication task. The efficiency
of data-transmission can be enhanced since this implementation is based on a certain need of the control system.
Therefore, the ETM may be regarded as an alternative to the traditional time-triggered mechanism. Considerable
efforts have been devoted to ETMs recently. In [6, 28], the authors proposed an ETM by two steps: the first step
is to design a controller for the NCSs under an assumption that the communication network is ideal (no delay and
no packet dropouts), and the second step is to design an event-triggered condition under the pre-designed controller.
There are two demerits if this two-step scheme works: One is called Zeno behaviour, which may result in infinite
events generated by the ETM; and the other is that the controller should be known before the ETM is designed.
Nevertheless, this scheme provides a good idea to improve the quality of an NCS. In [17], a discrete event-triggered
scheme (DETS) is developed, which depends on the discrete sampled data rather than the real-time signal. Thus, the
inter-event time is larger than one sampled period at least, resulting in an avoidance of Zeno behaviour [42]. Moreover,
the closed-loop system under a DETS can be modeled as a time-delay system, based on which the parameters of the
DETS and the controller gains can be co-designed in terms of linear matrix inequalities. Consequently, A DETS
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has been widely used, for example, control design for linear systems [17, 18, 23], for nonlinear systems [20, 41],
consensus of multi-agent systems [3, 10, 25, 30, 37, 43, 45], filter design [2, 9], and references therein. Notice that
the event-triggering condition plays an important role in further reducing the data-releasing rate or improving the
efficiency of data-releasing. An adaptive threshold of ETMs is proposed in [14, 22], where the threshold is dependent
on a time-varying condition rather than a fixed constant. For the purpose of reducing the number of data-releasing
(NDR) during the period when a steady state is reached, an event-triggered scheme is proposed in [21] to ensure
uniform ultimate bounded stability.

Some existing ETMs mainly focus on reducing the NDR while preserving certain control performance. Generally,
better control performance is expected if more sampled data are transmitted to drive the physical plant. It seems
paradoxical that increasing NDR is good for control performance while bad for network performance. However,
during the period when the system is disturbed by external noises, it is possible for the ETM to guarantee the data-
releasing rate greater than that when the system is not disturbed. In this sense, more information on the disturbed
system can be achieved for the controller design. It is expected that such a controller should make sure some better
performance of an NCS. To the best of authors’ knowledge, few works have been done on this issue, which motivates
the current study.

Output feedback control has wide applications since full information on system states is hard to measure in prac-
tical systems. Moreover, output feedback control is more complicated in control design compared with the state
feedback control. Some results on ETM-based output feedback control have been reported recently. To mention a
few, static output feedback based on event-triggered control schemes is introduced for stabilization in [21, 31]; and
the ETM-based dynamic output feedback control can be referred to [5, 38]. In this study, by introducing a novel ETM,
a dynamic output feedback control strategy is investigated to stabilize a system with probabilistic nonlinearities. The
main contributions of this study are highlighted as follows:

• A new ETM is proposed, under which the data releasing rate is relatively lower in the whole time domain than
some existing ETMs, except for the period when external disturbances are imposed on the system;

• A model of system nonlinearities with a probabilistic boundary is proposed by introducing some random vari-
ables;

• Based on the proposed ETM, together with the Lyapunov-Krasovskii functional approach, several sufficient
conditions are obtained to guarantee the mean square stability of the nonlinear system. These conditions can be
used to design the parameters in the dynamic output feedback controller and the ETM. Comparisons are made
to show the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Section 2 is a problem formulation including the model of
nonlinear system, ETM, and the control law developing. Section 3 presents some approaches to co-designing both
the dynamic output feedback controller and ETM; In Section 4, comparison results are given by a numerical example
with 4 cases to demonstrate the effectiveness of the proposed method. Section 5 concludes the paper.

2. Problem formulation

2.1. Model description

Consider the following class of continuous-time systems



ẋ(t) = Ax(t) + B1u(t) +

F∑

i=1

αi(t) fi(t, x(t)) + B2ω(t)

y(t) = C1x(t)

z(t) = C2x(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rm1 , y(t) ∈ Rm2 and z(t) ∈ Rm3 are the state, the control input, the controlled output and
the measurement output, respectively. ω(t) ∈ `2[0,∞) is disturbance input vector, fi(t, x(t)) is an unknown nonlinear
disturbance for i = 1, 2 · · · , F; A, B1, B2,C1, and C2 are known real matrices with appropriate dimensions; The
stochastic variable αi(t) satisfies that αi(t) ∈ {0, 1}, and

∑F
i=1 αi(t) = 1, where F is a positive integer.
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Define a set

Fi = {t| ‖S i−1x(t)‖2 ≤ ‖ fi(t, x(t))‖2 ≤ ‖S ix(t)‖2} (2)

with S 0 = 0, where S i is a known constant matrix, and the probability of Prob{t ∈ Fi} = αi.

Remark 1. The nonlinearity is widely found in practice systems. A common model of the nonlinearity is defined
by a unified bounded norm. However, in most cases, the variation of the nonlinearity is non-homogeneous. In (1),
the nonlinearity is divided into F sections. The bigger F is, the more statistical information should be known by a
statistical way in a prior.

It is noticed that a large number of statistical experiments is needed for a big F. For facilitate implementation,
one can choose an interval of the nonlinearity with a probability α, then the probability of the rest is 1 − α, i.e.
F = 2. Therefore, we mainly discuss this simplified situation for the follow-on study. Then, it is true that Prob{t ∈
F1} ∪ Prob{t ∈ F2} = 1, that is, α1 = 1 − α2 = α.

2.2. The dynamic output feedback control law

In this study, suppose that the controller and the sensors are connected by a wireless network [7]. The sampling
period is set by h. For a convenient description, the following notations are given:

• tk: the instants of data releasing;

• ak: the instants of the data arriving at the actuator;

• Lk: the intervals between ak and ak+1, i.e. Lk = [ak, ak+1);

The dynamic output feedback control law is developed by


ẋc(t) = Ac1xc(t) + Ac2xc(tkh) + Bcy(tkh)

u(t) = Kxc(t)
(3)

for t ∈ Lk, where xc(t) ∈ Rn is the state vector of the output feedback controller; and Ac1, Ac2, Bc and K are constant
real matrices to be determined.

2.3. Improved ETM

Define a set

Itk =

{
l|e(t)T Ωe(t) ≤ δ1yT (tkh)Ωy(tkh) +

δ2

2

[
yT (tkh)Ωe(t) + eT (t)Ωy(tkh)

]}
(4)

where e(t) = y(tkh) − ȳ(tkh); ȳ(tkh) is a mean value between the latest released data and the current sampled data, that
is ȳ(tkh) =

y(tkh)+y(tkh+lh)
2 for l ∈ Lk , {0, 1, 2, · · · , lM}; δ1 and δ2 are positive scalars, and Ω > 0 is a weighting matrix.

Then borrowing the idea from [17], the next releasing instant is determined by

tk+1h = tkh + (lM + 1)h. (5)

where lM = max
l∈Itk

l.

Remark 2. If one sets δ2 = 0 in (4), the ETM is the same as that in [17]. However, the definition of e(t) is different
from the conventional one (see [10, 17], and the references therein). A mean value is introduced to get the error in this
study, by which an unexpected releasing event (we call it mal-releasing) due to some unknown abrupt disturbance
can be avoided. Moreover, the data-releasing rate can be further reduced, which will be verified in Section 4.

Remark 3. ETMs in some existing literature mainly focus on reducing NDR for the system with suitable control
performance. To get better control performance, the item in (4) with δ2 is introduced, which plays a crucial role in
enhancing the data-releasing rate during the period when the system is disturbed by external signals while it keeps a
low level in the other period.
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The objective of this study is to design a dynamic output feedback controller with the form of (3) such that the
system with stochastic nonlinearity in (1) satisfies

• The instants of data-releasing are decided by (5).

• For the given disturbance attenuation γ > 0, the system (1) is mean square stable and under zero initial state
condition it satisfies E

{∫ ∞
t0

zT (s)z(s)ds
}
≤ E

{∫ ∞
t0
γ2ωT (s)ω(s)ds

}
.

3. Co-design of the controller and ETM

In this section, we are in a position to design the controller in (3) for the system (1) under the proposed new ETM.
Firstly, the closed-loop control system is modeled as a time-delay system with consideration of the ETM proposed in
subsection 2.3.

Define al
k = tkh + lh + dl

tk and Ll
k , [al

k, a
l+1
k ). Let Lk = ∪lM

l=0Ll
k, and one can know that d0

tk = dtk and dlM+1
tk = dtk+1 ,

which are networked induced delays at instants tkh and tk+1h, respectively. dl
tk for l ∈ Lk\{0} is an artificial delay to

guarantee the interval Ll
k is meaningful.

Define

d(t) = t − tkh (6)

for t ∈ Ll
k. Then it follows that

d ≤ dtk ≤ d(t) ≤ h + d = dM (7)

where d , min{dtk }, d , max{dtk }. Recalling the definition of e(t) and d(t), we have

y(tkh) = 2e(t) + y(tkh + lh) = 2e(t) + y(t − d(t)) (8)

for t ∈ Ll
k. Combining (1) , (3) and (8) , we can obtain the following dynamic equation with a compact form for t ∈ Ll

k

˙̃x(t) = Ax̃(t) + B1 x̃(t − d(t)) + B2e(k) + B3ω(t) + α(t)B4 f1(t, x(t)) + (1 − α(t))B4 f2(t, x(t)) (9)

where

x̃(t) =

[
x(t)
xc(t)

]
,A =

[
A B1K
0 Ac1

]
,B1 =

[
0 0

BcC1 Ac2

]
,

B2 =

[
0

2Bc

]
,B3 =

[
B2

0

]
,B4 =

[
I
0

]

Define Γ =
[
A 0 B1 0 B2 B3 αB4 (1 − α)B4

]
, and ξ(t) = col{x̃(t), x̃(t − d), x̃(t − d(t)), x̃(t − dM), e(t),

ωT (t), f1(t, x(t)), f2(t, x(t))}, the dynamic (9) can be re-written as

˙̃x(t) = Γξ(t) + (α(t) − α) (B4 f1(t, x(t)) − B4 f2(t, x(t))) (10)

The ETM condition proposed in Section 2.3 is equivalent to
1 +

δ2
2

4δ1

 e(t)T Ωe(t) ≤
[ √

δ1y(tkh) +
δ2

2
√
δ1

e(t)

]T

Ω

[ √
δ1y(tkh) +

δ2

2
√
δ1

e(t)

]
(11)

which leads to

σ1e(t)T Ωe(t) ≤ [σ2y(t − d(t)) + σ3e(t)]T Ω[σ2y(t − d(t)) + σ3e(t)]

= [σ2C1Ex̃(t − d(t)) + σ3e(t)]T Ω[σ2C1Ex̃(t − d(t)) + σ3e(t)]
(12)

for t ∈ Ll
k, where σ1 = 1 +

δ2
1

4δ1
, σ2 =

√
δ1, σ3 = 4δ1+δ2

2
√
δ1
, E = [I 0].

The following lemmas are useful in deriving the main results.
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Lemma 1. [13] For any constant matrix R1 > 0 ∈ Rn×n, scalars 0 ≤ d(t) ≤ d, and vector function ẋ : [−d, 0] → Rn

such that the following integration is well defined, it holds that

−d
∫ t

t−d

˙̃xT (s)R1 ˙̃x(s)ds ≤
[

x̃(t)
x̃(t − d)

]T [−R1 R1

R1 −R1

] [
x̃(t)

x̃(t − d)

]
(13)

Lemma 2. [32] Suppose M,N, and Ω are constant matrices of appropriate dimensions. Then

(τ(t) − τ̄1)M + (τ̄2 − τ(t))N + Ω < 0 (14)

is true for any τ(t) ∈ [τ̄1, τ̄2], if and only if

(τ̄2 − τ̄1)M + Ω < 0 (15)

(τ̄2 − τ̄1)N + Ω < 0 (16)

Theorem 1. For some given positive constants γ, d, dM , σ j ( j = 1, 2, 3), the system (10) is mean square stable with
an H∞ performance index γ, if there exist matrices P > 0,Ω > 0,Qi > 0,Ri > 0 and matrices Ni,Mi (i = 1, 2) with
appropriate dimensions such that

Π
(i)
1 =


Π11 ∗ ∗
Π21 Π22 ∗
Π

(i)
31 0 −R2

 < 0, (i = 1, 2) (17)

where

Π11 =



Ξ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
−R1 Ξ2 ∗ ∗ ∗ ∗ ∗ ∗
BT

1 P Ξ3 Ξ4 ∗ ∗ ∗ ∗ ∗
0 0 Ξ5 Ξ6 ∗ ∗ ∗ ∗
BT

2 P 0 0 0 −σ1Ω ∗ ∗ ∗
BT

3 P 0 0 0 0 −γ2I ∗ ∗
αBT

4 P 0 0 0 0 0 −αI ∗
(1 − α)BT

4 P 0 0 0 0 0 0 −(1 − α)I



,

Π21 =



0 0 σ2C1E 0 σ3I 0 0 0
C2E 0 0 0 0 0 0 0
A 0 dB1 0 dB2 dB3 αdB4 Ξ7

βA 0 βB1 0 βB2 βB3 αβB4 Ξ8

Ξ9 0 0 0 0 0 0 0
Ξ10 0 0 0 0 0 0 0
0 0 0 0 0 0 Ξ11 Ξ12

0 0 0 0 0 0 Ξ13 Ξ14



,

Π
(1)
31 =

[
0 βNT

1 βNT
2 0 0 0 0 0

]
,

Π
(2)
31 =

[
0 0 βMT

1 βMT
2 0 0 0 0

]
,

Π22 = diag
{ −Ω−1,−I,−R−1

1 ,−R−1
2 ,−I,−I,−R−1

1 ,−R−1
2 ,R2

}
,

Ξ1 = AT P + PA + Q1 + Q2 − R1,Ξ2 = N1 + NT
1 − Q1 − R1,Ξ3 = N2 − NT

1 ,

Ξ4 = −N2 − NT
2 + M1 + MT

1 ,Ξ5 = M2 − MT
1 ,Ξ6 = −M2 − MT

2 − Q2,

Ξ7 = (1 − α)dB4,Ξ8 = (1 − α)βB4,Ξ9 =
√
αS 1E,Ξ10 =

√
1 − αS 2E,

Ξ11 =
√
α(1 − α)dB4,Ξ12 = −

√
α(1 − α)dB4,Ξ13 =

√
α(1 − α)βB4,

Ξ14 = −
√
α(1 − α)βB4, β =

√
dM − d

5
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Proof. Choose the following Lyapunov-Krasovskii candidate for (10) [36]

V(t) = V1(t) + V2(t) + V2(t) (18)

where

V1(t) = x̃T (t)Px̃(t)

V2(t) =

∫ t

t−d
x̃T (s)Q1 x̃(s)ds +

∫ t

t−dM

x̃T (s)Q2 x̃(s)ds

V3(t) = d
∫ t

t−d

∫ t

s

˙̃xT (v)R1 ˙̃x(v)dvds +

∫ t−d

t−dM

∫ t

s

˙̃xT (v)R2 ˙̃x(v)dvds

For t ∈ Ll
k, taking derivation on Vi(t)(i = 1, 2, 3) and taking the expectation on them yields that

E
{
V̇(t) + zT (t)z(t) − γ2ωT (t)ω(t)

}

= E
{
2 ˙̃xT (t)Px̃(t) + α f T

1 (t, x(t)) f1(t, x(t))

−α f T
1 (t, x(t)) f1(t, x(t)) + (1 − α) f T

2 (t, x(t)) f2(t, x(t))

−(1 − α) f T
2 (t, x(t)) f2(t, x(t)) + zT (t)z(t) − γ2ωT (t)ω(t)

}

+ E
{
x̃T (t)Q1 x̃(t) − x̃(t − d)Q1 x̃(t − d)

}

+ E
{
x̃T (t)Q2 x̃(t) − x̃(t − dM)Q2 x̃(t − dM)

}

+ E
{
d2

1
˙̃xT (t)R1 ˙̃x(t) + (dM − d) ˙̃xT (t)R2 ˙̃x(t)

}

− E
d

∫ t

t−d

˙̃xT (s)R1 ˙̃x(s)ds −
∫ t−d

t−dM

˙̃xT (s)R2 ˙̃x(s)ds



+ E
{

2ξT (t)N

[
x̃(t − d) − x̃(t − d(t)) −

∫ t−d

t−d(t)

˙̃x(s)ds

]}

+ E
{

2ξT (t)M

[
x̃(t − d(t)) − x̃(t − dM)) −

∫ t−d(t)

t−dM

˙̃x(s)ds

]}

where N =
[
0 NT

1 NT
2 0 0 0 0 0

]T
, and M =

[
0 0 MT

1 MT
2 0 0 0 0

]T
.

Notice that E {α(t) − α} = 0. Then we have

E
{
2 ˙̃xT (t)Px̃(t)

}
≤ E

{
2ξT (t)ΓT Px(t)

}
(19)

From the definition of f1(t, x(t)) and f2(t, x(t)) in (2), one can know that

αE
{
f T
1 (t, x(t)) f1(t, x(t))

}
≤ αE

{
x̃T (t)ET S T

1 S 1Ex̃(t)
}

(1 − α)E
{
f T
2 (t, x(t)) f2(t, x(t))

}
≤ (1 − α)E

{
x̃T (t)ET S T

2 S 2Ex̃(t)
} (20)

Then

E
{
˙̃xT (t)Ri ˙̃x(t)

}
≤ E

{
ξT (t)ΓT RiΓξ(t)

}
+ E

{
(1 − α)x̃T (t)ET S T

2 S 2Ex̃(t)
}

+ α(1 − α)E
{
(B4 f1(t, x(t)) − B4 f2(t, x(t)))T Ri (B4 f1(t, x(t)) − B4 f2(t, x(t)))

}

− E
{
α f T

1 (t, x(t)) f1(t, x(t)) − (1 − α)x̃T (t)ET S T
2 S 2Ex̃(t) + αx̃T (t)ET S T

1 S 1Ex̃(t)
}

For matrices M,N and R2 > 0, it follows that [39]

−2ξT (t)N
∫ t−d

t−d(t)

˙̃x(s)ds ≤ (d(t) − d)ξT (t)NR−1
2 NT ξ(t) +

∫ t−d

t−d(t)

˙̃xT (s)R2 ˙̃x(s)ds (21)

6
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−2ξT (t)M
∫ t−d(t)

t−dM

˙̃x(s)ds ≤ (dM − d(t))ξT (t)MR−1
2 MT ξ(t) +

∫ t−d(t)

t−dM

˙̃xT (s)R2 ˙̃x(s)ds (22)

Combing the equivalent event-triggering condition in (12) and using Lemma 1, we have

E
{
V̇(t) + zT (t)z(t) − γ2ωT (t)ω(t)

}

≤ E
{
ξT (t)

(
Π11 − ΠT

21Π−1
22 Π21 + (d(t) − d)NR−1

2 NT + (dM − d(t))MR−1
2 MT

)
ξ(t)

} (23)

By the Schur complement, one obtains

Π11 − ΠT
21Π−1

22 Π21 + (dM − d)NR−1
2 NT ≤ 0 (24)

Π11 − ΠT
21Π−1

22 Π21 + (dM − d)MR−1
2 MT ≤ 0 (25)

is equivalent to Eq. (17). From Lemma 2, one can see that (17) is a sufficient condition to guarantee

Π11 − ΠT
21Π−1

22 Π21 + (d(t) − d)NR−1
2 NT + (dM − d(t))MR−1

2 MT ≤ 0 (26)

which implies that

E
{
V̇(t) + zT (t)z(t) − γ2ωT (t)ω(t)

}
< 0 (27)

Under zero initial condition, integrating both sides of Eq. (27) from 0 to t and let t → ∞, we have

E
{∫ ∞

t0

zT (s)z(s)ds

}
≤ E

{∫ ∞

t0

γ2ωT (s)ω(s)ds

}
(28)

With the condition of ω(t) = 0, we can conclude that E{V̇(t)} < 0 from Eq. (27). The proof can be completed.

Theorem 1 gives a sufficient condition to guarantee the system (1) to be mean square stable with an H∞ perfor-
mance index γ under the proposed ETM. Theorem 1 is obtained using Jensen inequality (i.e. Lemma 1). However, one
can use some free-weighting matrix-based integral inequalities (e.g. [29]) to derive some better results by following
the similar procedure as above. Next, we aim to design the dynamic output feedback controller gain Ac1, Ac2, Bc and
K in (3) based on Theorem 1 to ensure that the system (1) is mean square stable with an H∞ norm bound γ.

Theorem 2. For some given positive constants γ, d, dM , σi (i = 1, 2, 3), ρ, ρ j ( j = 1, 2), the system (10) is mean square
stable with an H∞ performance index γ, if there exist matrices X > 0,Y > 0,Ω > 0, Q̃i > 0, R̃i > 0 and Ñi, M̃i and
matrices W j(i = 1, 2 j = 1, ..., 4) with appropriate dimensions such that

Π̃
(i)
1 =



Π̃11 ∗ ∗
Π̃21 Π̃22 ∗
Π̃

(i)
31 0 −R̃2

 < 0, (i = 1, 2), (29)

Z =

[
X ∗
I Y

]
> 0 (30)

where

Π̃11 =



Ξ̃1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
−R̃1 Ξ̃2 ∗ ∗ ∗ ∗ ∗ ∗
ΨT

1 Ξ̃3 Ξ̃4 ∗ ∗ ∗ ∗ ∗
0 0 Ξ̃5 Ξ̃6 ∗ ∗ ∗ ∗

ΨT
2 0 0 0 −σ1Ω ∗ ∗ ∗

ΨT
3 0 0 0 0 −γ2I ∗ ∗

αΨT
4 0 0 0 0 0 −αI ∗

(1 − α)ΨT
4 0 0 0 0 0 0 −(1 − α)I



,
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Π̃21 =



0 0 σ2Ξ̃7 0 σ3I 0 0 0
Ξ̃8 0 0 0 0 0 0 0

dΨ0 0 dΨ1 0 dΨ2 dΨ3 αdΨ4 Ξ̃9

βΨ0 0 βΨ1 0 βΨ2 βΨ3 αβΨ4 Ξ̃10

Ξ̃11 0 0 0 0 0 0 0
Ξ̃12 0 0 0 0 0 0 0
0 0 0 0 0 0 Ξ̃13 Ξ̃14

0 0 0 0 0 0 Ξ̃15 Ξ̃16



,

Ψ0 =

[
AX + BW1 A

W4 YA

]
,Ψ1 =

[
0 0

W3 W2C1

]
,Ψ2 =

[
0

2W2

]
,Ψ3 =

[
B2

YB2

]
,Ψ4 =

[
I
Y

]
,

Π̃
(1)
31 =

[
0 βÑT

1 βÑT
2 0 0 0 0 0

]
,

Π̃
(2)
31 =

[
0 0 βM̃T

1 βM̃T
2 0 0 0 0

]
,

Π̃22 = diag
{
−ρI + ρ2Ω,−I,−ρ1Z + ρ2

1R̃1,−ρ2Z + ρ2
2R̃2,−I,−I,−ρ1Z + ρ2

1R̃1,

−ρ2Z + ρ2
2R̃2, R̃2

}
,

Ξ̃1 = ΨT
0 + Ψ0 + Q̃1 + Q̃2 − R̃1, Ξ̃2 = Ñ1 + ÑT

1 − Q̃1 − R̃1, Ξ̃3 = Ñ2 − ÑT
1 ,

Ξ̃4 = −Ñ2 − ÑT
2 + M̃1 + M̃T

1 , Ξ̃5 = M̃2 − M̃T
1 , Ξ̃6 = −M̃2 − M̃T

2 − Q̃2,

Ξ̃7 = [C1X C1] , Ξ̃8 = [C2X C2] , Ξ̃9 = (1 − α)dΨ4, Ξ̃10 = (1 − α)βΨ4,

Ξ̃11 =
[√
αS 1X

√
αS 1

]
, Ξ̃12 =

[√
1 − αS 2X

√
1 − αS 2

]
,

Ξ̃13 =
√
α(1 − α)dΨ4, Ξ̃14 = −

√
α(1 − α)Ψ4, Ξ̃15 =

√
α(1 − α)βΨ4

Ξ̃16 = −
√
α(1 − α)βΨ4, β =

√
dM − d

Proof. Introducing a non-singular matrix U ∈ Rn×n, such that P =

[
Y UT

U Y1

]
> 0, where Y1 = U(Y − X−1)UT , one

can know that Y1 > 0 from Eq. (30) by using Schur complement, and Y > 0 as well.
Notice that (ρiR̃i − Z)T R̃−1

i (ρiR̃i − Z) > 0 for R̃i > 0,Z > 0 and ρi > 0. Then

−ZR̃−1
i Z ≤ −ρiZ + ρ2

i R̃i, (i = 1, 2) (31)

Similarly, the following is true

−Ω−1 ≤ −ρI + ρ2Ω (32)

In order to get an LMI criterion, we denote


W1 = KU−T (I − YX)

W2 = UT Bc

W3 = UT BcC1X + UT Ac2 U−T (I − YX)

W4 = YAX + YBcKU−T (I − YX) + UT Ac1 U−T (I − YX)

(33)

Define

J1 =

[
X I

U−T (I − YX) 0

]
, J2 =

[
I Y
0 U

]
,

Φ1 = diag {J1, J1, J1, J1, I, I, I, I} ,
Φ2 = diag {I, I, J2, J2, I, I, J2, J2}

Let Φ = diag {Φ1,Φ2, J1} and define R̃i = JT
1 RiJ1, Q̃i = JT

1 QiJ1 for i = 1, 2. Pre- and post-multiplying (17) with Φ

and its transpose, and combing Eq. (31) - Eq. (33), we can conclude that (17) is a sufficient condition to guarantee
(29) holds. The proof is thus completed.
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From Eq. (33), we can obtain



Ac1 = U−T (W4 − YAX − YB1W1)(I − YX)−1UT

Ac2 = U−T (W3 −W2C1X)(I − YX)−1UT

Bc = U−T W2

K = W1(I − YX)−1UT

(34)

Remark 4. A less conservative result can be achieved if one chooses CCL algorithm [12]. To decrease the com-
putational complexity, the inequalities (31) and (32) are used to deal with the nonlinear iterms −Ω−1 and −R̃−1

i ,
respectively, in this study.

Remark 5. Some new methods, such as the method in [14, 41] may bring less conservative results, however, we
mainly focus on developing a novel ETM for the NCSs in this study. Lemma 2 is used for deriving convenience.

The error e(t) in this study is defined as e(t) = y(tkh) − ȳ(tkh). If choosing the error e(t) = y(tkh) − y(tkh + lh) for
the system without the item of nonlinearity, then we have the following corollary.

Corollary 1. For some given positive constants γ, d, dM , σi (i = 1, 2, 3), ρ, ρ j ( j = 1, 2), the system (10) is mean
square stable with an H∞ performance index γ, if there exist matrices X > 0,Y > 0,Ω > 0, Q̃i > 0, R̃i > 0 and Ñi, M̃i

and matrices W j(i = 1, 2 j = 1, ..., 4) with appropriate dimensions such that

Π̂
(i)
1 =


Π̂11 ∗ ∗
Π̂21 Π̂22 ∗
Π̂

(i)
31 0 −R̃2

 < 0, (i = 1, 2) (35)

Z =

[
X ∗
I Y

]
> 0 (36)

where

Π̂11 =



Ξ̃1 ∗ ∗ ∗ ∗ ∗
−R̃1 Ξ̃2 ∗ ∗ ∗ ∗
ΨT

1 Ξ̃3 Ξ̃4 ∗ ∗ ∗
0 0 Ξ̃5 Ξ̃6 ∗ ∗

Ψ̂T
2 0 0 0 −σ1Ω ∗

ΨT
3 0 0 0 0 −γ2I



,

Π̂21 =



0 0 σ2Ξ̃7 0 σ̂3I 0
Ξ̃8 0 0 0 0 0

dΨ0 0 dΨ1 0 dΨ̂2 dΨ3

βΨ0 0 βΨ1 0 βΨ̂2 βΨ3


,

Ψ̂2 =

[
0

W2

]
, σ̂3 =

2δ1 + δ2

2
√
δ1

Π̃
(1)
31 =

[
0 βÑT

1 βÑT
2 0 0 0

]
,

Π̃
(2)
31 =

[
0 0 βM̃T

1 βM̃T
2 0 0

]
,

Π̃22 = diag
{
−ρI + ρ2Ω,−I,−ρ1Z + ρ2

1R̃1,−ρ2Z + ρ2
2R̃2, R̃2

}

the other parameters are the same as those in Theorem 2.
The parameters of dynamic output feedback controller Ac1, Ac2, Bc and K can be obtained from Eq. (34). However,

Theorem 2 and Corollary 1 are independent on the non-singular matrix U, which means that it is hard to design the
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controller gains from (34). For this reason, we perform an irreducible transformation as xc(t) = U−T xc(t) on the
dynamic (3), yielding


ẋc(t) = Ac1xc + Ac2xc(t − d(t)) + Bcy(tkh)

u(t) = Kxc(t)
(37)

where Ac1 = UT Ac1U−T ,Ac2 = UT Ac2U−T ,Bc = UT Bc,K = KU−T . From (34), we have



Ac1 = (W4 − YAX − YB1W1)(I − YX)−1

Ac2 = (W3 −W2C1X)(I − YX)−1

Bc = W2

K = W1(I − YX)−1

(38)

According to the analysis above, the dynamic output feedback control and ETM for the system with stochastic
nonlinearity can be co-designed by the following algorithm:

Algorithm 1:

• Step 1: Choose the expectation of each nonlinearity αi;

• Step 2: Get X,Y,Wi (i = 1, 2, 3, 4), and Ω in (4) by solving LMIs (29) and (30) or (35) and (36);

• Step 3: The controller gain in (3) is derived from (Ac1, Ac2, Bc,K) = (Ac1,Ac2,Bc,K);

• Step 4: Determine the next releasing instant based on (5).

4. EXAMPLES

Example 1: Consider the inverted pendulum with the dynamics described by (1). The parameters are given by [16]

A =


0 1 0
0 0 1
0 −10 −10

 , B1 =


0
0
10

 , B2 =


1
1
1

 ,C
T
1 =


1 0
0 0
0 1

 ,C
T
2 =


1
1
1

 (39)

Assume the control signal is transmitted over the network. The index of network in (7) is defined by d = 0.008s,
d = 0.004s and the sampling period is h = 0.01s. The initial condition, in this simulation, is given by x(t) =

[0.2 − 0.3 0.2].
Four cases listed in Table 1 are set up in this example. In Case I-III, the nonlinearities of the system are removed

to avoid a confusion in comparison, where Case I uses a traditional ETM in [17]; A mean value is introduced to get
the error e(t) of the traditional ETM in Case II; The proposed ETM in this study is Case IV; The ETM condition of
Case III has a same form as the one in Case IV, while the error e(t) is given by a traditional way.

Table 1: Different cases of ETM in (4) (δ1 = 0.006)

δi(i = 1, 2) e(t)

Case I δ2 = 0 e(t) = y(tkh) − y(tkh + lh)
Case II δ2 = 0 e(t) = y(tkh) − 1

2 [y(tkh) + y(tkh + lh)]
Case III δ2 = 0.1 e(t) = y(tkh) − y(tkh + lh)
Case IV δ2 = 0.1 e(t) = y(tkh) − 1

2 [y(tkh) + y(tkh + lh)]

By Algorithm 1, we can get the controller gains and the parameters of ETM under Case I, Case II and Case III
with ρ1 = ρ2 = ρ = 0.1 and γ = 5 as follows:
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Under Case I:

Ac1 =


0.3052 0.5360 −1.7257
−18.0561 −6.4285 2.0333
−16.7396 −4.8989 −3.4639

 , Ac2 =


−1.3007 −0.3763 0.5345
0.3085 0.0902 −0.1281
0.4459 0.1591 −0.3210



Bc =


−6.4311 1.1924
1.4921 −0.3098
1.8865 −1.4634

 ,K =


0.1758
0.0473
−0.0542



T

,Ω =

[
7.8917 −0.3119
−0.3119 5.4862

]
(40)

Under Case II:

Ac1 =


−0.2342 0.2412 −0.9603
−33.7735 −7.2517 2.0053
−31.8139 −5.7639 −2.6311

 , Ac2 =


−1.0533 −0.1885 0.2586
0.4989 0.0913 −0.1204
0.5548 0.1233 −0.2245



Bc =


−2.9989 0.3612
1.3150 −0.2239
1.3655 −0.8872

 ,K =


0.3336
0.0569
−0.0630



T

,Ω =

[
13.4947 −0.4575
−0.4575 8.7400

]
(41)

Under Case III:

Ac1 =


−0.5945 0.2312 −0.9653
−63.4559 −21.3934 12.3388
−65.8097 −21.0398 9.4696

 , Ac2 =


−1.3508 −0.4000 0.4413
0.2578 0.0710 −0.0530
0.2026 0.0988 −0.1631



Bc =


−5.9569 0.7028
0.8869 0.3076
0.2978 −1.4977

 ,K =


0.2718
0.0829
−0.0727



T

,Ω =

[
8.4449 0.0210
0.0210 6.5718

]
(42)

In practice, the output signal may have a jitter in processing of measurement, which will lead to some unex-
pected releasing events. To reduce the probability of mal-releasing, a mean value is introduced to get the error e(t).
Furthermore, the number of data-releasing can be greatly reduced.

For clear description, we define

date-releasing rate (η) =
the number of data-releasing (NDR)
the number of data-sampling (NDS)

(43)

Here we set the disturbance ω(t) occurs at every sampling instant during 10s-15s as follows

ω1(t) =


0.02, t = tkh and t ∈ [10, 15]

0 others
(44)

Under this pulsatile disturbance, the system states and triggering instants under Case I and Case II are shown in
the Figure 1 and Figure 2, respectively. The data releasing rates are 314

2501 and 162
2501 for those two cases, respectively,

while the control performance has no clear changes by comparing the state responses in Figure 1 and Figure 2. A
lower data-releasing rate can be achieved by introducing a new definition of e(t) in Case II. Thus the network burden
can be mitigated.

To illustrate our proposed scheme by introducing the item with δ2 (δ2 , 0) in (4) can enhance the data-releasing
rate when the system disturbed by external disturbance, we reset the disturbance as

ω2(t) =


0.01, t ∈ [18, 22]

0, others
(45)

Figure 3 and Figure 4 show the responses of the system with ω2(t) under Case I and Case III, respectively. Table 2
gives the statistics under those two cases. The data releasing rate in Case I and Case III are 434

3501 and 328
3501 , respectively.
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Figure 1: State responses and triggering instants under Case I and ω1(t)
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Figure 2: State responses and triggering instants under Case II

It demonstrates that the proposed ETM can reduce the data releasing rate to mitigate the burden of network effectively.
Next, we further examine the NDR during 18s-22s when the disturbance occurs. It can be found that much more
sampling data are released into the network by comparing the system under Case III and Case I during this period.
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Figure 3: State responses and triggering instants under Case I and ω2(t)

Time (s)
0 5 10 15 20 25 30 35

S
ta

te
 r

es
po

ns
e

-0.4

-0.2

0

0.2

0.4

Time (s)
0 5 10 15 20 25 30 35

R
e
le
a
s
e
n
u
m
b
e
r
s

0

20

40

60

80

Figure 4: State responses and triggering instants under Case III and ω2(t)

That is, the controller can receive more information from the system when it is interfered with the external disturbance
by using the proposed method.

Next, we study the performance for the system with stochastic nonlinearity under Case IV. The parameters of
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Table 2: NDS and NDR of the system with ω2(t)

condition NDS NDR NDR in [18s,22s]

CASE I 3501 434 54
CASE III 3501 328 81

stochastic nonlinearity are given by F = 2, α = 0.8, S 1 = diag[0.1 0.1 0.1], S 2 = diag[0.3 0.3 0.3]. According to
Algorithm 1, the parameters of dynamic controller and ETM can be obtained as

Ac1 =


−12.2791 −4.9506 3.7549
−124.6644 −54.2904 41.1158
−141.0967 −60.2342 44.2077

 , Ac2 =


−2.1377 −0.2793 0.5484
1.9096 0.9562 −0.3971
1.0456 0.9029 −0.8446



Bc =


−1.6383 0.1120
−0.4790 0.5221
−0.6069 −0.2648

 ,K =


7.8342
3.2055
−2.8420



T

,Ω =

[
9.8990 −0.1415
−0.1415 7.2437

]
(46)
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Figure 5: State responses and triggering instants under Case IV and ω2(t)

Figure 5 shows the state responses and event-triggering instants of the system by using the proposed ETM, from
which one can see the system has a good control performance with a lower data releasing rate. Furthermore, the NDR
during the period when the system is disturbed is much more than the other period. The controller can receive more
data under this period such that the system to achieve a better control performance.

5. Conclusion

In this paper, an improved ETM for networked control systems with probabilistic nonliearities has been proposed.
As a result, the data-releasing rate can be further reduced. It has been shown that this ETM is more helpful in
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improving the control performance with less data-releasing rate than some conventional ETMs, which contributes
to the new event-triggering condition introduced in the ETM. Furthermore, a mean value has been introduced to the
error such that the data-releasing number can be further reduced, since unexpected triggering event generated by some
unknown noises is avoided effectively. An example with 4 cases has been given to demonstrate the effectiveness of
the proposed method. It should be pointed out that some network-induced phenomena, such as packet dropouts and
packet disorders [8] are not considered in this study, which motivates our future study.
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